数据结构--练习 第8章 排序


1.选择题

(1)从未排序序列中依次取出元素与已排序序列中的元素进行比较,将其放入已排序序列的正确位置上的方法,这种排序方法称为( )。

A.归并排序 B.冒泡排序 C.插入排序 D.选择排序

答案:C

(2)从未排序序列中挑选元素,并将其依次放入已排序序列(初始时为空)的一端的方法,称为( )。

A.归并排序 B.冒泡排序 C.插入排序 D.选择排序

答案:D

(3)对n个不同的关键字由小到大进行冒泡排序,在下列( )情况下比较的次数最多。

A.从小到大排列好的 B.从大到小排列好的

C.元素无序 D.元素基本有序

答案:B

解释:对关键字进行冒泡排序,关键字逆序时比较次数最多。

(4)对n个不同的排序码进行冒泡排序,在元素无序的情况下比较的次数最多为( )。

A.n+1 B.n C.n-1 D.n(n-1)/2

答案:D

解释:比较次数最多时,第一次比较n-1次,第二次比较n-2次……最后一次比较1次,即(n-1)+(n-2)+…+1= n(n-1)/2。

(5)快速排序在下列( )情况下最易发挥其长处。

A.被排序的数据中含有多个相同排序码

B.被排序的数据已基本有序

C.被排序的数据完全无序

D.被排序的数据中的最大值和最小值相差悬殊

答案:C

解释:B选项是快速排序的最坏情况。

(6)对n个关键字作快速排序,在最坏情况下,算法的时间复杂度是( )。

A.O(n) B.O(n2) C.O(nlog2n) D.O(n3)

答案:B

解释:快速排序的平均时间复杂度为O(nlog2n),但在最坏情况下,即关键字基本排好序的情况下,时间复杂度为O(n2)。

(7)若一组记录的排序码为(46, 79,56,38,40,84),则利用快速排序的方法,以第一个记录为基准得到的一次划分结果为( )。

A.38,40,46,56,79,84 B.40,38,46,79,56,84

C.40,38,46,56,79,84 D.40,38,46,84,56,79

答案:C

(8)下列关键字序列中,( )是堆。

A.16,72,31,23,94,53 B.94,23,31,72,16,53

C.16,53,23,94,31,72 D.16,23,53,31,94,72

答案:D

解释:D选项为小根堆

(9)堆是一种( )排序。

A.插入 B.选择 C.交换 D.归并

答案:B

(10)堆的形状是一棵( )。

A.二叉排序树 B.满二叉树 C.完全二叉树 D.平衡二叉树

答案:C

(11)若一组记录的排序码为(46,79,56,38,40,84),则利用堆排序的方法建立的初始堆为( )。

A.79,46,56,38,40,84 B.84,79,56,38,40,46

C.84,79,56,46,40,38 D.84,56,79,40,46,38

答案:B

(12)下述几种排序方法中,要求内存最大的是( )。

A.希尔排序 B.快速排序 C.归并排序 D.堆排序

答案:C

解释:堆排序、希尔排序的空间复杂度为O(1),快速排序的空间复杂度为O(log2n),归并排序的空间复杂度为O(n)。

(13)下述几种排序方法中,( )是稳定的排序方法。

A.希尔排序 B.快速排序 C.归并排序 D.堆排序

答案:C

解释:不稳定排序有希尔排序、简单选择排序、快速排序、堆排序;稳定排序有直接插入排序、折半插入排序、冒泡排序、归并排序、基数排序。

(14)数据表中有10000个元素,如果仅要求求出其中最大的10个元素,则采用( )算法最节省时间。

A.冒泡排序 B.快速排序 C.简单选择排序 D.堆排序

答案:D

(15)下列排序算法中,( )不能保证每趟排序至少能将一个元素放到其最终的位置上。

A.希尔排序 B.快速排序 C.冒泡排序 D.堆排序

答案:A

解释:快速排序的每趟排序能将作为枢轴的元素放到最终位置;冒泡排序的每趟排序能将最大或最小的元素放到最终位置;堆排序的每趟排序能将最大或最小的元素放到最终位置。

2.应用题

(1)设待排序的关键字序列为{12,2,16,30,28,10,16*,20,6,18},试分别写出使用以下排序方法,每趟排序结束后关键字序列的状态。

① 直接插入排序

② 折半插入排序

③ 希尔排序(增量选取5,3,1)

④ 冒泡排序

⑤ 快速排序

⑥ 简单选择排序

⑦ 堆排序

⑧ 二路归并排序

答案:

①直接插入排序

[2    12]   16   30   28   10   16*   20   6    18         

[2    12    16]  30   28   10   16*   20   6    18         

[2    12    16   30]  28   10   16*   20   6    18         

[2    12    16   28   30]  10   16*   20   6    18         

[2    10    12   16   28  30]   16*   20   6    18         

[2    10    12   16   16*  28   30]   20   6    18         

[2    10    12   16   16*  20   28   30]   6    18         

[2    6     10   12   16  16*   20   28   30]   18         

[2    6     10   12   16  16*    18   20   28   30]

 

② 折半插入排序 排序过程同①

③ 希尔排序(增量选取5,3,1)

10   2    16   6    18   12   16*   20  30    28 (增量选取5)

6    2    12   10   18   16   16*   20  30    28 (增量选取3)

2    6    10   12   16   16*  18      20  28    30 (增量选取1)

 

④ 冒泡排序

2    12   16    28   10   16*  20   6     18   [30]        

2    12   16    10   16*  20   6    18    [28   30]        

2    12   10    16   16*  6     18   [20   28   30]          

2    10   12    16   6   16*    [18   20   28   30]          

2    10   12    6   16   [16*    18   20   28   30]         

2    10   6    12   [16   16*    18   20   28   30]        

2    6   10    [12   16   16*    18   20   28   30]

2    6   10    12   16   16*    18   20   28   30]       

⑤ 快速排序

12  [6    2  10]  12  [28  30  16*  20   16  18]          

6   [2]  6  [10] 12 [28  30  16*  20   16  18 ]         

28  2    6   10   12 [18  16  16*  20 ]28  [30 ]       

18  2   6   10  12   [16*  16] 18 [20]  28  30          

16*     2   6   10  12   16* [16]   18  20   28  30

左子序列递归深度为1,右子序列递归深度为3

⑥ 简单选择排序

2    [12   16   30   28   10   16*   20   6    18]          

2    6    [16   30   28   10   16*   20   12   18]          

2    6    10   [30   28   16   16*   20   12   18]          

2    6    10   12   [28   16   16*   20   30   18]          

2    6    10   12   16   [28   16*   20   30   18]          

2    6    10   12   16   16*    [28  20   30   18]          

2    6    10   12   16   16*   18   [20   30   28]         

2    6    10   12   16   16*   18    20   [28  30]         

2    6    10   12   16   16*    18   20   28   [30]

 

⑧ 二路归并排序


2 12 16 30 10 28 16 * 20 6 18

2 12 16 30 10 16* 20 28 6 18

2 10 12 16 16* 20 28 30 6 18

2 6 10 12 16 16* 18 20 28 30


(2)给出如下关键字序列{321,156,57,46,28,7,331,33,34,63},试按链式基数排序方法,列出每一趟分配和收集的过程。

答案:

按最低位优先法 →321→156→57→46→28→7→331→33→34→63

分配 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

         321     33   34     156  57  28

         331     63           46   7

收集 →321→331→33→63→34→156→46→57→7→28

(3)对输入文件(101,51,19,61,3,71,31,17,19,100,55,20,9,30,50,6,90);当k=6时,使用置换-选择算法,写出建立的初始败者树及生成的初始归并段。

答案:

初始归并段:R1:3,19,31,51,61,71,100,101

R2:9,17,19,20,30,50,55,90

R3:6

3.算法设计题

(1)试以单链表为存储结构,实现简单选择排序算法。

[算法描述]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
voidLinkedListSelectSort(LinkedList head)

//本算法一趟找出一个关键字最小的结点,其数据和当前结点进行交换;若要交换指针,则须记下

//当前结点和最小结点的前驱指针

p=head->next;

while(p!=null)

{q=p->next; r=p; //设r是指向关键字最小的结点的指针

while (q!=null)

{if(q->data<r->data) r=q;

q:=q->next;

}

if(r!=p) r->data<-->p->data;

p=p->next;

}

```

(2)有n个记录存储在带头结点的双向链表中,现用双向冒泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向冒泡排序即相邻两趟排序向相反方向冒泡)。

[算法描述]:
```sh
typedef struct node

{ ElemType data;

struct node *prior,*next;

}node,*DLinkedList;

void TwoWayBubbleSort(DLinkedList la)

//对存储在带头结点的双向链表la中的元素进行双向起泡排序。

{intexchange=1; //设标记

DLinkedList p,temp,tail;

head=la //双向链表头,算法过程中是向下起泡的开始结点

tail=null; //双向链表尾,算法过程中是向上起泡的开始结点

while (exchange)

{p=head->next; //p是工作指针,指向当前结点

exchange=0; //假定本趟无交换

while (p->next!=tail) // 向下(右)起泡,一趟有一最大元素沉底

if (p->data>p->next->data) //交换两结点指针,涉及6条链

{temp=p->next; exchange=1;//有交换

p->next=temp->next;temp->next->prior=p //先将结点从链表上摘下

temp->next=p; p->prior->next=temp; //将temp插到p结点前

temp->prior=p->prior; p->prior=temp;

}

else p=p->next; //无交换,指针后移

tail=p; //准备向上起泡

p=tail->prior;

while (exchange && p->prior!=head)

//向上(左)起泡,一趟有一最小元素冒出

if (p->data<p->prior->data) //交换两结点指针,涉及6条链

{temp=p->prior; exchange=1; //有交换

p->prior=temp->prior;temp->prior->next=p;

//先将temp结点从链表上摘下

temp->prior=p; p->next->prior=temp; //将temp插到p结点后(右)

temp->next=p->next; p->next=temp;

}

else p=p->prior; //无交换,指针前移

head=p; //准备向下起泡

}//while (exchange)

} //算法结束

(3)设有顺序放置的n个桶,每个桶中装有一粒砾石,每粒砾石的颜色是红,白,蓝之一。要求重新安排这些砾石,使得所有红色砾石在前,所有白色砾石居中,所有蓝色砾石居后,重新安排时对每粒砾石的颜色只能看一次,并且只允许交换操作来调整砾石的位置。

[题目分析]利用快速排序思想解决。由于要求“对每粒砾石的颜色只能看一次”,设3个指针i,j和k,分别指向红色、白色砾石的后一位置和待处理的当前元素。从k=n开始,从右向左搜索,若该元素是兰色,则元素不动,指针左移(即k-1);若当前元素是红色砾石,分i>=j(这时尚没有白色砾石)和i<j两种情况。前一情况执行第i个元素和第k个元素交换,之后i+1;后一情况,i所指的元素已处理过(白色),j所指的元素尚未处理,应先将i和j所指元素交换,再将i和k所指元素交换。对当前元素是白色砾石的情况,也可类似处理。

为方便处理,将三种砾石的颜色用整数1、2和3表示。

[算法描述]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
void QkSort(rectype r[],int n) {

// r为含有n个元素的线性表,元素是具有红、白和兰色的砾石,用顺序存储结构存储,

//本算法对其排序,使所有红色砾石在前,白色居中,兰色在最后。

int i=1,j=1,k=n,temp;

while (k!=j){

while (r[k].key==3) k--;//当前元素是兰色砾石,指针左移

if (r[k].key==1) //当前元素是红色砾石

if (i>=j){temp=r[k];r[k]=r[i];r[i]=temp; i++;}

//左侧只有红色砾石,交换r[k]和r[i]

else {temp=r[j];r[j]=r[i];r[i]=temp; j++;

//左侧已有红色和白色砾石,先交换白色砾石到位

temp=r[k];r[k]=r[i];r[i]=temp; i++;

//白色砾石(i所指)和待定砾石(j所指)

} //再交换r[k]和r[i],使红色砾石入位。

if (r[k].key==2)

if (i<=j) { temp=r[k];r[k]=r[j];r[j]=temp; j++;}

//左侧已有白色砾石,交换r[k]和r[j]

else { temp=r[k];r[k]=r[i];r[i]=temp; j=i+1;}

//i、j分别指向红、白色砾石的后一位置

}//while

if (r[k]==2) j++; /*处理最后一粒砾石

else if (r[k]==1) { temp=r[j];r[j]=r[i];r[i]=temp; i++; j++; }

//最后红、白、兰色砾石的个数分别为: i-1;j-i;n-j+1

}//结束QkSor算法

[算法讨论]若将j(上面指向白色)看作工作指针,将r[1..j-1]作为红色,r[j..k-1]为白色,r[k..n]为兰色。从j=1开始查看,若r[j]为白色,则j=j+1;若r[j]为红色,则交换r[j]与r[i],且j=j+1,i=i+1;若r[j]为兰色,则交换r[j]与r[k];k=k-1。算法进行到j>k为止。

算法片段如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
inti=1,j=1,k=n;

while(j<=k)

if (r[j]==1) //当前元素是红色

{temp=r[i]; r[i]=r[j]; r[j]=temp; i++;j++; }

else if (r[j]==2) j++; //当前元素是白色

else //(r[j]==3 当前元素是兰色

{temp=r[j]; r[j]=r[k]; r[k]=temp; k--; }

对比两种算法,可以看出,正确选择变量(指针)的重要性。

(4)编写算法,对n个关键字取整数值的记录序列进行整理,以使所有关键字为负值的记录排在关键字为非负值的记录之前,要求:

① 采用顺序存储结构,至多使用一个记录的辅助存储空间;

② 算法的时间复杂度为O(n)。

[算法描述]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
void  process (int A[n]){

low = 0;

high = n-1;

while ( low<high ){

while (low<high && A[low]<0)

low++;

while (low<high && A[high]>0)

high++;

if (low<high){

x=A[low];

A[low]=A[high];

A[high]=x;

low++;

high--;

}

}

return;

}

```

(5)借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..n]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请简要说明算法思想并编写算法。

[题目分析]把待查记录看作枢轴,先由后向前依次比较,若小于枢轴,则从前向后,直到查找成功返回其位置或失败返回0为止。

[算法描述]
```sh
int index (RecType R[],int l,h,datatype key)

{int i=l,j=h;

while (i<j)

{ while (i<=j && R[j].key>key) j--;

if (R[j].key==key) return j;

while (i<=j && R[i].key<key) i++;

if (R[i].key==key) return i;

}

cout<<“Not find”; return 0;

}//index

(6)有一种简单的排序算法,叫做计数排序。这种排序算法对一个待排序的表进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键字互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键字比该记录的关键字小。假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存放位置即为c。

① 给出适用于计数排序的顺序表定义;

② 编写实现计数排序的算法;

③ 对于有n个记录的表,关键字比较次数是多少?

④ 与简单选择排序相比较,这种方法是否更好?为什么?

[算法描述]

1
2
3
4
5
6
7
① typedef struct

{int key;

datatype info

}RecType

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
②void CountSort(RecType a[],b[],int n) 

//计数排序算法,将a中记录排序放入b中

{for(i=0;i<n;i++)//对每一个元素

{for(j=0,cnt=0;j<n;j++)

if(a[j].key<a[i].key) cnt++;//统计关键字比它小的元素个数

b[cnt]=a[i];

}

}//Count_Sort

③ 对于有n个记录的表,关键码比较n2次。

④ 简单选择排序算法比本算法好。简单选择排序比较次数是n(n-1)/2,且只用一个交换记录的空间;而这种方法比较次数是n2,且需要另一数组空间。

[算法讨论]因题目要求“针对表中的每个记录,扫描待排序的表一趟”,所以比较次数是n2次。若限制“对任意两个记录之间应该只进行一次比较”,则可把以上算法中的比较语句改为:

1
2
3
4
5
6
7
for(i=0;i<n;i++) a[i].count=0;//各元素再增加一个计数域,初始化为0

for(i=0;i<n;i++)

for(j=i+1;j<n;j++)

if(a[i].key<a[j].key) a[j].count++; else a[i].count++;

-------------本文结束感谢您的阅读-------------
hao14293 wechat
交流或订阅,请扫描上方微信二维码